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The most general form for the rapid pressure-strain rate, within the context of classical 
Reynolds-stress transport (RST) closures for homogeneous flows, is derived, and 
truncated forms are obtained with the aid of rapid distortion theory. By a classical 
RST-closure we here denote a model with transport equations for the Reynolds stress 
tensor and the total dissipation rate. It is demonstrated that all earlier models for the 
rapid pressure-strain rate within the class of classical Reynolds-stress closures can be 
formulated as subsets of the general form derived here. Direct numerical simulations 
were used to show that the dependence on flow parameters, such as the turbulent 
Reynolds number, is small, allowing rapid distortion theory to be used for the 
determination of model parameters. It was shown that such a nonlinear description, of 
fourth order in the Reynolds-stress anisotropy tensor, is quite sufficient to very 
accurately model the rapid pressure-strain in all cases of irrotational mean flows, but 
also to get reasonable predictions in, for example, a rapid homogeneous shear flow. 
Also, the response of a sudden change in the orientation of the principal axes of a plane 
strain is investigated for the present model and models proposed in the literature. 
Inherent restrictions on the predictive capability of Reynolds-stress closures for 
rotational effects are identified. 

1. Introduction 
A basic aim and general trend in the development of turbulence models is to improve 

the range of validity of the models. The price to be paid in order to achieve the 
increased generality is a greater complexity of the models. However, mere algebraic 
complexity need not be an insurmountable obstacle today considering the availability 
and rapid rate of development of good hardware and software tools for computation. 

In complex flows we typically encounter effects of strong streamline curvature or 
body forces caused by, for example, system rotation. Since the kinetic energy equation 
is unaffected by, for example, system rotation, the lowest level of single-point closure 
at which such effects enter explicitly is that in which transport equations are formulated 
for the individual Reynolds-stress components. In these, the Coriolis force gives rise to 
terms that will directly influence the intercomponent transfer. A nice demonstration of 
the capability of Reynolds-stress models to predict rotation effects is that of Launder, 
Tselepidakis & Younis (1987). They showed that even with relatively simple modelling 
of the terms involved, the main effects of system rotation on a plane turbulent channel 
flow could be predicted with reasonable accuracy. The tendency to develop a distinctly 
asymmetric velocity profile cannot be predicted with, for example, a standard k-e 
model, but was here clearly shown to result from the inherent dynamics of the 
Reynolds stress transport equations. 
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The superiority of Reynolds-stress transport of (RST) closures compared to lower 
level models for the prediction of a rotating homogeneous shear flow was illustrated by 
Speziale, Gatski & Mac Giolla Mhuiris (1990), who also recognized, however, that 
there remain severe problems for cases with rotational mean flows. They particularly 
studied the case of rotating homogeneous shear flow. Other phenomena such as 
secondary flow in a non-circular-cross-section duct clearly need modelling at, at least, 
a level above the standard eddy viscosity level, since the flow in the cross-stream planes 
is driven by the anisotropic distribution of the Reynolds stresses. 

The present study concerns the development of RST models, and in particular the 
role of intercomponent transfer caused by the part of the pressure-strain correlation 
associated with the mean velocity gradients. Near-wall pressure-reflection and strong 
inhomogeneity effects are outside the scope of the present work. 

The basic foundations for the development of RST models in general and the 
treatment of pressure-strain-rate terms in particular were laid out by Chou (1945) and 
Rotta (1951). We will refer to closure schemes with transport equations for the velocity 
correlations, &, and the total dissipation rate, E ,  as cIassicaI Reynolds-stress models. 
For more general background information the reader is referred to, for example, the 
review of Launder (1989). In the development of this type of closure scheme extensive 
use has been made of basic kinematical and other constraints that can be derived from 
the tensorial formulation of the equations (see e.g. Lumley 1978). 

as the quantity for which transport equations should be solved 
it is perhaps more convenient to formulate model equations for the kinetic energy, 
k = :Kui, and the Reynolds-stress anisotropy tensor 

Instead of using 

where Sf j  is the Kronecker delta. 
Hence, in this context of classical Reynolds-stress closures all other turbulence 

quantities must be modelled as (algebraic) expressions of the mean velocity gradient 
tensor, k,  E and aij (the primary quantities). After having chosen the level of turbulence 
closure, one can regard the remaining task of modelling the individual terms as a 
question of how to, most effectively, use the information contained in these primary 
quantities. 

In homogeneous turbulence there is no spatial redistribution of energy and the 
transport equations for the stress anisotropies can symbolically be written 

where the production term Ply) is explicit in aij and hence needs no modelling. eij 
denotes the dissipation-rate anisotropy tensor 

which traditionally has been taken to be zero, but some more ambitious modelling 
attempts have been made recently (see e.g. Hallback, Groth & Johansson 1990). The 
pressure-strain rate correlation term has in (1) been divided into a rapid or mean 
velocity-turbulence interaction term (I7$’) and a slow or turbulence-turbulence 
interaction term (L$)). These represent intercomponent transfer and have zero trace. 
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The construction of more generally valid models for these terms is one of the key issues 
for improvement of Reynolds-stress closures. 

The focus is here on energy redistribution terms in homogeneous turbulent flows. 
We will also restrict our attention to the rapid part (a recent investigation. heavily 
based on direct numerical simulations, of the slow part can be found in Hallbick, 
Sjogren & Johansson 1993). For homogeneous flows the rapid pressure-strain rate can 
be written in terms of a fourth-rank tensor: 

in which ( 3 )  

and U,,l is the mean velocity gradient tensor. Expression (3) comes from the formal 
solution of the Poisson equation for the pressure field. This description is approximately 
valid also in moderately inhomogeneous flows as was illustrated by evaluation of 
numerical simulation data for turbulent channel flow (Bradshaw, Mansour & Piomelli 
1987). For a more general case one may also regard (2) as the first term in a series 
expansion, where the next would involve mean flow curvature terms, etc. 

In terms of spectral quantities we may write 

where K is the wavenumber vector and QtI is the spectrum tensor. Crow (1968) 
considered the response of initially isotropic turbulence to a sudden rapid strain and 
was able to explicitly derive the initial magnitude of the rapid pressure-strain by use 
of (4). 

It is immediately clear from (3) and (4) that the M-tensor is symmetric with respect 
to the last two indices. It is also symmetric with respect to the first two, even if the 
spectrum tensor contains an antisymmetric part, since this helicity-related part always 
will vanish after integration over wavenumber space. Chou (1945) and Rotta (1951) did 
not construct any model for M explicitly, but were aware of the basic constraints of 
index symmetries and continuity. Rotta also noted that Green’s theorem yields a 
further constraint, in that the Reynolds stresses are retrieved when the two last indices 
are contracted. 

The above expressions show that M is not immediately affected by a sudden change 
in the mean strain field. This suggests that the modelled M should not explicitly depend 
on CTt,g. Furthermore, M is dimensionless and therefore cannot depend explicitly on k 
(or c), except through a possible dependence on the turbulence Reynolds number. 
Altogether, this suggests that a natural approach to the modelling of the rapid 
pressure-strain is to express M in terms of the dimensionless Reynolds-stress 
anisotropy tensor. Actually, this is the only reasonable choice within the context of 
classical RST-modelling. Accordingly, practically all existing models can be seen as 
expansions of M to first or higher order in at?. 

Reynolds (1987) (see also Lee & Reynolds 1985) analysed the modelling of Z7:;) by 
expanding M in terms of a,, and showed that the most general such expansion that 
satisfies correct index symmetry properties can be written with the aid of fifteen 
undetermined scalar functions. A complete ansatz for a linear model can be written in 
terms of five model parameters. 

The complete linear R;’,’)-model was first derived by Hanjalic & Launder (1972) 
(although not used there) and is described in detail in Launder, Reece & Rodi (1975). 
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Naot, Shavit & Wolfshtein (1973), who developed a model for the two-point velocity 
correlation obtained the same general form for the linear model through Taylor 
expansion of the correlation function. Launder et al. (1975) also demonstrated, 
through comparisons with various experimental data, the fairly wide range of 
applicability of such Reynolds-stress closures. Morris (1984) further studied the 
performance of linear models for inhomogeneous situations where (2 and 3) are not 
applicable. He derived a linear model by applying the syinmetry and zero-trace 
conditions directly on the I7$) and tuned the resulting larger set of model parameters 
through comparisons with experiments (actually only homogeneous shear flow). 

Lee (1989) studied in detail rapid distortion theory (RDT) solutions for axisyminetric 
turbulence undergoing contraction or expansion, with and without dilatation. He also 
compared different models for the rapid pressure-strain and constructed an extension 
of the linear model (for /W) that includes information about both the invariants of the 
anisotropy tensor and the magnitude of the strain rate. Considerable improvements in 
the predictions were obtained in this manner. The inclusion of strain-rate information 
in the model had earlier been attempted (see the discussion in Reynolds 1976 of an 
earlier model of Lumley), but was later abandoned because of the basic argument that 
the exact M is only indirectly dependent on the mean strain rate through the 
correlation function, and, hence, does not immediately respond a sudden change in the 
mean strain rate. 

An interesting investigation of the performance of linear models was made by Shih, 
Reynolds & Mansour (1990) who presented a model for the spectrum tensor 
parametrized (to first order) in the Reynolds-stress anisotropy tensor. It bears a close 
resemblance to the parametrization of the spectrum tensor in spectral anisotropy 
measures described by Cambon, Jeandel & Mathieu (1981). Shih et al. showed that the 
resulting pressure-strain rate is equivalent to a linear model of the Launder et al. (1975) 
form. They found the range of validity of the spectrum model and thereby of linear I&(,? 
models to be quite small in terms of the magnitude of the anisotropy. It is clear from 
their results that, in general, accurate predictions require a model that is nonlinear in 
the stresses, or equivalently, the anisotropy tensor. In fact, in 1972 HanjaliC & Launder 
had already proposed a nonlinear model, quadratic in the stresses, on the grounds of 
lack of agreement between linear models and experimental data. 

It has been argued (see e.g. Reynolds 1976) that the model for the rapid 
pressure-strain should be linear since a field that is the sum of two uncorrelated fields 
should give a pressure strain that is the sum of the two individual pressure-strain rates 
(see (4)). This is in principle a sound argument, but one may readily show (see e.g. 
Lumley 1978) that linear models cannot satisfy the basic, and perhaps more vital, 
condition of ensuring realizable solutions under all flow conditions. Violation of this 
condition may under extreme conditions lead to prediction of negative energies. 

The formulation of this realizability constraint is discussed in detail in Schumann 
(1977) and Lumley (1978). It is based on Schwartz’ inequality and the simple fact that 
the velocity is real. A way to satisfy the realizability constraint is to require that the 
models should always ensure non-negative Reynolds stresses in a diagonalized system. 
Hence, we have an inequality condition for these quantities. Pope (1985) distinguishes 
between the concepts of weak and strong realizability. According to Pope the weak 
realizability principle states that if a physical quantity satisfies an inequality, the model 
should give values that satisfy the same inequality. The strong realizability principle 
furthermore states that the rate of change of a physical quantity in an extreme state is 
zero. This is a necessary condition for the possibility of extreme states to be accessible. 

In the present context the condition of strong realizability would imply zero value 
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for the modelled diagonal pressure-strain rate corresponding to a velocity component 
with vanishing energy. 

Models for other terms in the stress transport equations have in some cases been 
proposed that satisfy the strong realizability constraint. An example is the nonlinear 
model for the dissipation-rate anisotropy tensor of Hallback et al. (1990). 

The possibility of satisfying the realizability constraint and the improved prediction 
accuracy in general has led several investigators to develop nonlinear models (e.g. Shih 
& Lumley 1985 and Fu, Launder & Tselepidakis 1987). Shih, Mansour & Chen (1987) 
tested various models for the rapid pressure-strain against direct numerical simulation 
data for homogeneous turbulent flows and demonstrated clearly the improved 
accuracy in the predictions obtained with nonlinear models. 

Speziale, Sarkar & Gatski (1991) analysed the modelling of the two parts of the 
pressure-strain, compared various existing models and proposed a new nonlinear 
model. They found an improved performance over linear models and recognized 
remaining difficulties in cases with rotational mean flows. 

The numerical aspects of the implementation of nonlinear models, such as the 
possible influence on the convergence rate, have not yet been fully investigated. 

The general increased predictive accuracy for nonlinear models can also be 
understood from the study of Shih et al. (1990) of a model for the spectrum tensor. A 
nonlinear l7:;) model would correspond to a model spectrum with nonlinear 
parametrization in the anisotropies. The energy distribution in wavenumber space can 
thereby be considerably more complex than that of the model spectrum tensor studied 
by Shih et al. In general such a parametrization is an approximate description of the 
spectrum even if infinitely high-order nonlinearities are included in the parametrization. 
However, for rapidly irrotationally strained turbulence it appears possible to 
completely describe the spectrum tensor and its evolution through parametrization in 
atj. This can easily be verified for rapidly axisymmetrically strained initially isotropic 
turbulence. This also implies that classical RST-modelling can be expected to be 
adequate for such cases. 

Models for the rapid pressure-strain normally contain a fair number of model 
parameters. Calibration of these has been done against experimental data and more 
recently against direct numerical simulation (DNS) results, and rapid distortion theory 
(RDT) has also proven to be a powerful tool in the determination of the model 
constants, although serious attention must, of course, be paid to the issue of possible 
dependence on the magnitude of the mean strain rate. One may note that in the rapid 
limit the slow pressure-strain and the dissipation become negligible and the only term 
left in (1) that needs modelling is the rapid pressure-strain rate. 

Lee, Kim & Moin (1989) showed that RDT may indeed give an accurate description 
of the turbulence and its structure at realistic strain rates in a study, using RDT and 
direct numerical simulations, of turbulence subjected to a uniform mean shear. They 
used shear rates up to typical values that can be found in the near-wall region of 
turbulent channel flow, and found close similarities between results obtained with the 
two methods. RDT has also sometimes been used to estimate the energy distribution 
among the components in strongly sheared flows. For instance, initially axisymmetric 
turbulence in the situation of uniform rapid mean shear was analysed by Maxey (1982) 
with the main aim of obtaining asymptotic stress ratios. He also computed the 
pressure-strain-rate components for this case. 

Lee (1990) used RDT to obtain the rapid pressure-strain rate in the case of 
irrotational mean flow. He derived a model expressed as an expansion (to fourth order) 
in the stress anisotropy tensor. This model is derived from a direct power series 
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expansion of the RDT results without requiring the model to satisfy the realizability 
condition. Away from the two-component limit the model appears to give a good 
description of the rapid pressure-strain rate for irrotational mean flows. 

Efforts to generalize the concept of RST-models have been discussed in the 
literature. Launder (1989) discussed the possibility of introducing transport equations 
for quantities other than the Reynolds stresses and the dissipation rate. He expresses 
some doubt though that the benefits from such an extension could outweigh the extra 
computational cost. 

Mansour, Shih & Reynolds (1991) studied the effects of rapid rotation on initially 
anisotropic homogeneous turbulence with the aid of RDT and DNS, and discussed 
briefly some possibilities of extending the Reynolds-stress closure concept in order to 
improve the treatment of effects of rotation. Also, Cambon, Jacquin & Lubrano (1992) 
analysed a generalized approach with the aim of improving the description of effects 
of rotation. Some first steps were taken, and the great difficulty involved was 
recognized. 

It is the aim of the present paper to investigate the limits of the accuracy obtainable 
for the modelling of the rapid pressure-strain-rate term within the context of 
Reynolds-stress closures. The ultimate form of the model is analysed and specific 
truncated models are evaluated with the aid of rapid distortion theory and direct 
numerical simulations. The derivation of the general form of the model is presented in 
$2, and comparisons with existing models are given in 93.  Rapid distortion theory is 
used in 94 to determine model parameter values at different levels of truncation. 
Results over wide ranges of the total strain are given for four different homogeneous 
flows, viz. axisymmetric strain, plane strain, pure rapid rotation of initially anisotropic 
turbulence and homogeneous shear flow. Also, the response to a sudden change in the 
orientation of the principal axes of strain for a plane strain situation is invcstigated and 
compared with that of other models. The inherent limitations of Reynolds-stress 
closures in describing some of the aspects of the evolution of turbulence quantities in 
rotational mean flows are also illustrated. The results and conclusions are summarized 
in 95. 

2. Derivation of the I7:;) model 
If we limit ourselves to the realm of classical RST closures the natural starting point 

for constructing a rapid pressure-strain-rate model is to assume that, apart from scalar 
parameters, the (dimensionless) M-tensor is a function of the Reynolds-stress 
anisotropy tensor alone. The most general ansatz for a model of A4 in terms of an 
expansion in atj may be written 

I W g j , ,  = A ,  Sgj S,, + A2(Si, Sj, + Si, Sj,) 

+ A, a i j  a p q  +A* aij S p q  + A , ( a i p  ajq + a i q  a j p  + a j p  aiq + J j g  sip) 
+ ' i j  a p q  + ajq + " i q  a j p )  + a p k  aqk + aik ajk 6pq 

+ AIO(aik 'pk 'jg + ajk 'pk ' iq + aik aqk 'jp + ' j k  " g k  ' f p )  

+ '11 aij a p k  ahq + '1, a p q  aih a k j  + ',,(at, a p k  ajq 

+ ajr apk aiq + aik aqk ajp  + ajk aqk atp) 

+ A 14 ' i k  " j k  apl aZg ' i k  aj i(akp alq + akq alp>* 

The scalar functions A,, a = 1-15 may depend on the invariants 

11, = aij aji, 111, = aij ajk aki 
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as well as the turbulence Reynolds number Re,  and possibly the strain-rate parameter 
S* : 

where Sij = i(U,,,+ U,,,) is the strain-rate tensor. In the following analysis the mean 
velocity gradient tensor will be replaced by the sum of S,, and the rotation tensor 
Oij = +( U,,l - Uj,  0. The possible dependence of A ,  on the strain-rate parameter 
would contradict the previously discussed condition that the modelled M should not 
explicitly depend on the magnitude of the mean strain rate. 

Expression ( 5 )  is complete, in that it contains all tensorially independent terms. The 
fact that fifth (and higher)-order terms do not give rise to further independent terms 
can easily be understood from the following reasoning : Mijpq has four free indices and 
terms of fifth order in aij either contain one of the invariants (11, or 111,) or a group 
like a,, alk akj.  The latter can be rewritten with the aid of the Cayley-Hamilton theorem 
as 

Expression (5) was used by Reynolds (1987) and in some subsequent studies (see Lee 
1990) to analyse the consequences for the modelling of the rapid pressure-strain rate. 
Insertion of the ansatz (5) in (2) would lead to an expression for the Ill;) containing 14 
scalar functions since A ,  and A ,  only appear in the combination A,+A, .  However, 
some of the other terms can also be grouped together with the aid of the following three 
identities (readily verified by use of, for example, symbolic manipulation software) : 

at, ulk akj = iII1, Sfj +;II, a,Lj. (8) 

apk(aik ‘jq + ajk ‘tq) S F ,  (a<j apq - a j p  + “pk  “kq ‘if + ‘jq) (9 a)  

apk(aik ajq + ajk ’pq (aij’ “pk akq + aik “kj - $‘a ‘ i p  sf,> ’pq ,  (9 b) 

(9 c) 

where aij  and Sfj here actually may denote any traceless symmetric tensors of rank two. 
Relations (9a-c) can also be derived (after some algebra) from the generalized 
Cayley-Hamilton theorem for two-tensor products of extension three (see Spencer & 
Rivlin 1958). Hence, the number of scalar functions in the expression for If:;) is 
reduced to eleven with the aid of these identities. The continuity condition, which is 
equivalent to requiring l7$) to be traceless (see (2), ( 3 ) ) ,  is readily applied and further 
reduces the number of scalar functions to nine, and we get 

apl aqk(aik ajZ + ajk spq (2uik akj aql + lla,(aij apq - aiq ajp> 

-iIIIu(aip ‘ j a  + a j p  siq - a i j  a p q ) )  s p q ,  

1 
- Ilj;) = Spq[Q,  S i p  Sjq + Q2(aip Sjq + ujp S,, -$upq Si j )  k 

+ Q, a p q  aij + Q g ( a i p  a j p  -+apk a k q  St j )  

Q5 a p ~  ‘Lq aij + (Q, a p q  Q, apl  at,) (%c akj -iIIa sij>I 

The relations between the scalar functions Qa = Qz(II,, 111,, Re,, S*), a = 1-9, and 
the A,  are readily found by insertion of (5) in (2). The fact that the most general ansatz 
for IT$] can be written in terms of only nine scalar functions (or eleven before 
application of the continuity condition) has not been shown in earlier studies. 
Expression (10) constitutes the ultimate form for the model of Ilj;) (for homogeneous 
flows) within the context of Reynolds-stress closures, in which transport equations are 
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used for ui uj and 8 (or equivalently a,?, k, e). Hence, all existing models based on the 
concept of expansion of M in terms of the stress anisotropy measures, can be expressed 
as subsets of (10). 

2.1. General conditions and model constraints 
Any reasonable model for M should at least conserve the index symmetry properties 
of the exact tensor and satisfy the continuity condition, the latter ensuring a traceless 
pressure-strain rate tensor. With the aid of definition (3) these conditions yield 

The ansatz (5 )  satisfies the symmetry conditions and continuity is satisfied by the final 
form (10) for I7::). A further condition is obtained by the fact that l/lrl is the Green's 
function of the Laplace operator, so that the normalized Reynolds stress is retrieved 
when the last two indices of M are contracted. This so-called Green's condition, 

M . .  23 P q  =Il/f gjqp, M*jpp = n/J j ipq ,  Mijig = 0. (1 1 )  

M . .  23PP = la..++',, 2 t 3  (12) 
is readily derived from definition (4) and gives rise, together with the continuity 
condition, to six equations for the A ,  (in (5)) .  Inserting the results in the expressions 
for the Q,, using the identities (9u-c) and observing that some of the A ,  only appear 
in certain combinations, we may finally express all of these in terms of seven 
undetermined scalar functions, B,, say : 

Q1 = $-5(4B2 + 15BJ II,-;B5 III,-&j(19B6- 1208,) II;, ( 1 3 4  
Q,  = - 12B,-~B511a-~(B6-8B7)III,, (13b) 
Q, = - 8B2 + 36B, +&j(7B6 - 72B,) 11,, ( 1 3 4  
Q4 = 96B2 - 36B, -&(7B6 - 72B,) 11,, ( 1 3 4  
Q5 = B5, ( 1 3 4  
(26 = B,, (13 f )  
Q 7 =-4--  yB1  ++(2B, - B5) 11, -&(3B6 - 56B,) 111,, (13d  
Q8 = - 16B2+28B3+&(3B6-56B,)II,, (13h) 
Qg = B4. (13i) 

Hence, the complete I7:;) can be expressed in terms of seven scalar functions (see (lo)),  
and six of these appear in the part associated with the irrotational part of the flow (S,). 
Lee (1990) (see also Reynolds 1987) arrived at a form containing seven scalar functions 
associated with Sij. The present results show that only six of these are independent. 

It may here be interesting to note that the model ansatz for M that satisfies tensor 
symmetry conditions, continuity and the Green's condition also automatically reduces 
to the exact expression in the limit of isotropic turbulence: 

This also implies that the general form (10) for I&!:), with the Q given by (13a-i), 
ensures a correct response to first order in time for the anisotropy measures in 
suddenly, rapidly distorted, initially isotropic turbulence, for arbitrary irrotational as 
well as rotational mean strain fields. Note that this is true regardless of the specifics of 
the scalar functions B,-B,. 

2.1.1. Realizability and truncation 
It follows from (2) and (3) that I7;) (no summation) vanishes in the limit of two- 

component turbulence where u,, = 0. The condition that this property should be 
conserved by the model is equivalent to the strong realizability principle (Pope 1985). 

(14) ( i so tropic)  = 3 6 
MZlPV 15 ij' pq-%'6p'jq+'jp ' tq ) .  
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.8 

FIGURE 1. The ui3 invariant map. 

This condition is described in more detail in the Appendix. In the case of modelling the 
rapid pressure-strain rate one may impose a somewhat more general condition, 

M / \ * p g  = 0 (1 5 )  

which follows directly from definition (3) of M. 
The model ansatz (5 )  for M is an expansion in the Reynolds-stress anisotropy 

measures agj. It is, hence, natural to form the final model as a truncation of the 
expression at a chosen power of Ilaiill. To obtain such a consistent truncation we need 
to expand the scalar functions B,, (a = 1-7) in terms of the invariants 11, and 111,. A 
natural approach is to use a Taylor expansion in these quantities?. A consistent 
truncation at fourth order would include all tensonally independent terms in the model 
expression for M, and contains the following set of scalar function expansions: 

B, = a, + a4 11, + a7 III,, (16a) 

(16b) 

B, = B5 = a,, B, = alU, B, = all, (16c) 

B, = a2 + as II,, B, = a3 + ag II,, 

where the eleven parameters may depend on Re,  and S*, but not on the invariants of 
Uii. 

Truncations at third, second or first order are here obtained by including only 
a1 - a6, a1 - a3 and al, respectively. A fifth-order truncation would involve sixteen 
parameters, and so on. 

The generalized realizability condition (15) can now readily be applied, and will 
reduce the number of undetermined parameters. The condition is to be applied in the 
two-component limit where all Reynolds stresses involving the empty component are 
zero. The invariants are in this limit related by 

111, = 11, -; (17) 
which, hence, can be represented by a straight line in the invariant map (see Lumley 
1978). All turbulent states are, in the invariant map, located inside a region bounded 
by this line and the two curves representing axisymmetric turbulence (see figure I). For 
axisymmetric turbulence the invariants are related by 

11; = 6111;. (18) 
t Other possibilities exist, and were investigated, but found not to add any greater generality to 

the final results. Other types of expansions will hence not be further discussed here. 
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For the fourth-order truncation six of the eleven parameters will be determined by 
the generalized realizability condition (1 5). We may, for instance, write 

aq = - &(3 + 60a1 + 48a2 - 40a3), ( 1 9 4  
= -~-132a2+96~, , ,  (19b) 

ag = & + ?(a2 + m3),  U9C) 

a, = :a1 -:(a, + a,) ++a,,, ( 1 9 4  

a8 = -&(~+21c~,+ 1Oa,+8aI,), (194 
a9 = -&$+21a,+ lOa,)+&a,,. (19f) 

Five parameters remain, one of which (a,,), however, does not appear in the 
expressions for Q,. Hence, four parameters, a,, a,, a3, a,,, determine the complete 
fourth-order model for 17jJ'). In the following we will denote these by y l ,  y2, ys and y4, 
respectively. The latter has an essential influence for cases with rotational mean flow 
(Q,, + 0). For irrotational cases it is of influence only when at? has non-zero off- 
diagonal elements in the coordinate system where the axes coincide with the principal 
axes of the mean strain-rate tensor. 

The corresponding third-order model is obtained simply from the fourth-order 
model by setting 

which, hence, has only one undetermined model parameter. The corresponding 
second-order model is found by setting 

y =-3+21 88 22717 Y 3 = - & - & 7 1 *  y 4 =  '3 (20) 

y --3 y 4 = o .  (21) 1 1 
y1=-20, y2=-ii8, 3 -  220, 

For the second-order model we note that all parameters are determined. This result has 
been obtained in several earlier studies (see e.g. Shih & Lumley 1985 and Reynolds 
1987), where it also was shown that no linear model, based on this concept, can satisfy 
realizabilit y . 

The present methodology thus represents a new and quite straightforward (at least 
with the aid of symbolic manipulation software) technique to construct a model at a 
chosen level of truncation. The underlying assumption is that an expansion of the type 
(16ac)  has a reasonable behaviour within the complete invariant map. We will return 
later to the more far-reaching issue of whether the expansion may be said to, in some 
relevant sense, converge for increasing order of the truncation. The following 
presentation will be focused on the new fourth-order model and its relation to earlier 
models published in the literature. 

2.2. Dependence on Reynolds number and strain-rate parameter 
It is of particular importance for the generality of the final model that the dependence 
on various flow parameters either is small or can be described in a known manner. In 
the present work we have used direct numerical simulations to investigate the influence 
of Re, and S * .  

2.2.1. The simulation code 
The code used for the simulations is based on a pseudospectral method and can 

handle homogeneous flows with or without imposed mean strain fields. Mean strain or 
shear is handled by a distorting grid method (see Rogallo 1981). The code has been 
used in a large number of computations of homogeneous flows, in on-going work, for 
the general study of return-to-isotropy processes. It is a development of a simulation 
code for wall-bounded flows (see Lundbladh & Johansson 1991). 
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FIGURE 2. The normalized rapid pressure strain rate, IIK)/kU’(U‘ = U , , , )  as function of 11, 
in axisymmetric turbulence as obtained from direct numerical simulations. (a) Influence of 
Re,(S* = 3): coarse-dashed, fine-dashed and solid curves represent Re,. x 45,93 and 180, respectively. 
(b) Influence of S*(Re, = 45): coarse-dashed, fine-dashed and solid curves represent S* x 1 ,  3 
and 9 respectively. 

The computations presented below were carried out with up to 1283 spectral modes. 
Care was also taken to investigate box size effects and to ensure that these were 
negligible. 

Detailed evaluation of the various source terms in the Reynolds-stress-transport 
equations can easily be carried out when the complete velocity fields are available 
during the simulation. In the present investigation the rapid pressure-strain-rate term 
was determined from the DNS data by solving the Poisson equation for the so-called 
rapid part of the pressure field and thereafter forming the correlation with the 
fluctuating strain rate by averaging over the computational domain. Hence, ensemble 
averaging is replaced by volume averaging. 

2.2.2. Results for axisymmetric, strained turbulence 

Turbulence subjected to a homogeneous axisymmetric strain showed a practically 
negligible influence of the turbulent Reynolds number (see figure 2a)  over the range 
investigated (Re,  FZ 45-180). 

The influence of the strain-rate parameter S* (for definition, see (7)) was found to 
be somewhat stronger, but still quite small over the range of values where the rapid part 
plays a dominant role over the slow pressure-strain rate (see figure 2b). For the cases 
shown in figure 2(b) this is actually only true for the highest strain rate. For rapidly 
axisymmetrically strained turbulence the kinetic energy increases essentially linearly 
with total strain. For the S* = 1 case the strain rate is so slow that the kinetic energy 
decreases to half of its initial value during the simulation. The modelled normalized 
pressure-strain rate here deviates by about 20 % from the RDT result. However, this 
will be of less importance since in the case of a low value of the mean strain rate the 
rapid pressure-strain term plays a minor role in the overall budget of the RST- 
equations. The small influence of the flow parameters in cases where the mean strain 
rate is large, and thereby IT$) plays a significant role in the balance equation, is 
encouraging for the possibility of constructing a model, where the model parameters, 
here denoted y1-y4, may be taken as numeric constants. 

We may regard the simulation of three different mean strain rates in axisymmetric 
turbulence as a means of studying three different distributions of the energy in 
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wavenumber space for a given degree of anisotropy. The general conclusion to be 
drawn from the simulation results is that there is a reasonable uniqueness in the 
relation between A4 and the anisotropy tensor aij. This is encouraging for the 
possibility of constructing a rapid pressure-strain-rate model. 

Simulations at various strain rates were also carried out for the case corresponding 
to an axisymmetric expansion and a plane strain situation. The dependence on S* was 
here found to be similar, and, hence, quite small for cases where the rapid effects 
dominate. 

3. Existing 17,’,”-models in Reynolds-stress closures 
All existing models for the rapid pressure-strain rate that are based, explicitly or 

implicitly, on expansion of M in the Reynolds stresses, or equivalently their 
anisotropies, can be put in the form (10). Actually, this is essentially the only 
possibility, as long as we restrict ourselves to the class of classical Reynolds stress 
closures, where the transported quantities explicitly solved for are the Reynolds stresses 
and c: (or equivalently k, atj and 6). 

The now classical linear I7$) model suggestions in the paper of Launder et al. (1975) 
have proven to be reasonably successful in flows with a moderate degree of anisotropy. 
In terms of the general form (10) their more general model (equation (10) in that paper) 
has non-zero values of the scalar functions Q1, Q, and Q7. 

The fact that linear models cannot satisfy such basic properties as strong realizability 
has lead to efforts to generalize the model to include nonlinear terms. Nonlinear terms 
were actually already included in the paper of HanjaliC & Launder (1972). Shih & 
Lumley (1 985) constructed a model that satisfies strong realizability and includes non- 
zero values for six of the nine scalar functions in the ultimate form (10). The nonlinear 
models of Fu et al. (1987) and Reynolds (1987) also satisfy strong realizability and can 
be seen as partial forms of (10). The model of Lee (1990) is derived by use of rapid 
distortion theory for irrotational strain fields. The description of these and the recent 
model of Speziale et al. (1991) in terms of the form (10) is summarized in table 1 .  

The performance of the various existing models for the rapid pressure-strain rate has 
been analysed in several recent papers. For instance, Shih & Lumley (1993) used DNS 
data for irrotational mean flows and homogeneous shear flow at different shear rates, 
and concluded that tensorially nonlinear models give predictions that are superior to 
those of linear models. They classified the model of Speciale et al. as quasi-linear, and 
pointed out that it does not satisfy the Green’s condition. They suggested that the latter 
may be an important factor in explaining the relatively poor performance they found 
for that model. 

The importance of satisfying basic conditions and constraints is obvious for the 
possibility of obtaining a model of reasonable generality. The strong realizability 
condition plays a special role in ensuring a sound behaviour near extreme states. In 
strongly strained or sheared flows the component(s) of vanishing energy will then be 
reasonably well predicted regardless of the details of model. 

The performance of the present model(s) will be compared with that of existing 
models in the following sections. 
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Reference Non-zero scalar functions Satisfies SR 

Launder et al. (1975) Qi-Pz, Q, No 
Shih & Lumley (1985) Qi-Qu Q,-Q, Yes 
Fu et al. (1987) Qi-Q4, Q 7 - G  Yes 
Reynolds (1987) Qi-PQt Yes 
Lee (1990) Qi-Q, No 
Speziale et al. (1991) Q i - 4 2 3 7  Q, No 

t Described in terms of 13 functions 

TABLE 1. Existing rapid pressurestrain-rate models. SR denotes strong realizability 

4. Determination of parameters for present model and comparisons with 
RDT and existing models 

The simulation results indicate that the relation between M and the anisotropy 
tensor is practically independent of Reynolds number and little influenced by the 
variations in energy distributions in wavenumber space that may be caused by different 
mean strain rates. We may therefore in the following restrict ourselves to comparisons 
in the rapid limit where the results may be obtained by use of rapid distortion theory 
(RDT). In this limit we may write the transport (or evolution) equations for the stress 
anisotropies : 

where the a,-production term can be expressed as 

= Sk,(a,jak,+~6eja,,-6j, ail,-6ilujl,-~6ik6j,)+1;2k,(6j,u,l,+6,, a,,). (23) 
We note that Pi'j") may be expressed as a quadratic form in the aij (cf. (10) for the 
pressure-strain rate term). 

The general II$) model form (10) inserted into (22) gives a correct behaviour of uij 
to first order in time ( t )  for initially isotropic, suddenly distorted turbulence, regardless 
of degree of truncation. For this type of flow situation it is natural to make 
comparisons between RDT-results and model results for increasing powers of t. We 
may, for small times, expand 

a.. = t@ + t2a!?) + '. . 
$3 vl 

for the case of initially isotropic turbulence. 
It may be shown that the model will give correct results to second order in time (i.e. 

u$) will also be given correctly by the model) by choosing 

(25) y1 = -7 

for arbitrary irrotational or rotational mean strain fields, and regardless of the values 
of the other model parameters. 

A model with truncation at third order in the amplitude of aii would be completely 
determined with the above choice for y l .  Hence, a third-order model cannot be expected 
in general to give correct results for powers of t higher than two. 

We note that a second-order IT:;) model must have yI = -& in order to satisfy 
strong realizability, and can, hence, not give correct results to more than t' for 
arbitrary distortions. 

1 
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At third order in time things get more complex. We will here first consider the case 
of arbitrary irrotational strain in some detail, exemplified by axisymmetric and plane 
strain. The situation with rotational mean flow will be illustrated by homogeneous 
shear and rapid pure rotation. Together these cases are used to determine the 
parameters, and to evaluate the capability of this type of modelling. A further test of 
the model is chosen as a case of a sudden change in the orientation of the principal axes 
of strain in a plane strain situation. 

4.1. Rapid irrotational strain - comparisons with RDT 
For the case of initially isotropic turbulence subjected to an arbitrary irrotational 
strain one can show that there is a unique relation between the anisotropy state, 
represented by aij, and the total strain, here measured in terms of Si j t .  It can be 
expressed as 

(26) 
where we define the invariants of the mean strain-rate tensor as IIbv,= SiiSji and 
111, = Si jS jkSk i .  Since only the total strain has influence we may write the scalar 
functions as f, =fa(IIs t2 ,  111, t3) (a  = 1,2). Note that (26) is an exact relation (not an 
expansion in time). The uniqueness of (26) rests on the fact that the spectrum tensor 
for this type of case with isotropic initial conditions is uniquely determined by the total 
applied strain alone (see e.g. Batchelor 1953 and Lee 1986). In a review of RDT and 
its applications Hunt (1978) discusses the applicability of RDT to Reynolds-stress 
closures, and rapid pressure-strain-rate modelling in particular. In agreement with the 
above formula he concludes that it is only for rapidly distorted irrotational flows that 
the turbulence statistics depend solely on the total strain (and not the entire straining 
history). 

For small total strains one may express the scalar functions fa in terms of an 
expansion in time : 

aij = f, Sij t +f2(Si ,  S,, - $TIs CE,) t2 ,  

fa = c,, + ca2 11, t 2  + ca3 111, t 3  + ca4 11; t4 + .. . , (27) 

The coefficients of this expansion can be determined by inserting (27) into (26) and 
indentifying with the corresponding results of the RDT calculation. This yieldst 

8 184 124 248 30512 112468 (ell, c21, c12, c.22, c13, c23, c14, ..*I = (-" 159 -- '219 ~ 1575, ~ 1155, ~ 34653 ___ 5255257 -- 33783753 .-')* (28) 
These RDT-coefficients were also derived by Lee (1990) in a similar manner. The 

inverse relation for the total strain expressed in terms of the anisotropy tensor can be 
written in a form exactly analogous to (26) and the scalar functions involved can 
readily be obtained from that relation. 

In the case of initially isotropic turbulence aij will remain diagonal in the coordinate 
system aligned with the principal axes of the applied strain. The diagonal elements 
(the eigenvalues) of the anisotropy tensor may, with the aid of (26), (27), be written 

aaa = ~ ~ ~ s ~ t + c , , ( s ~ - + I I , )  t2+c12saIISt3+[c13saTII~+c22(~~-~IIS)IIS]  t4+ . . . ,  

where s,, a = 1-3 are the eigenvalues of the mean strain tensor. In order to calibrate 
the model parameters we may now insert the model expression (10) for I7:;) (with the 
Qa determined from the Green's and realizability conditions) and Pi;) from (23) into 
(22), and expand aij in time. In the diagonalized reference system we obtain an 

t All of this type of results were derived/checked by use of symbolic manipulation software to 
minimize the risk of algebra errors. 

(a = 1-3) 

(29) 
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FIGURE 3. (a) The Reynolds-stress anisotropies and (b)  kinetic energy as function of total reference 
strain in a (rapid) plane strain flow. The numbers 2 4  label the predictions with second-, third- and 
fourth-order models. 

expression of the form (29) with coefficients dependent on the model parameters. 
Identification of powers of t with the corresponding RDT-expression yields, as 
expected, that the model always agrees to first order in time with RDT, and that 
second-order terms are idenlical if y1 = -+. Third-order terms agree with RDT if 

(30) y1 = -?, 1 y3 = L - M  196 5 7 2 ,  

i.e. a:;) in expansion (24) is correctly predicted by the model for arbitrary irrotational 
strain fields. 

The fourth-order model will also give correct predictions to fourth order in time for 
the special case of plane strain (say, s, = 0, s3 = - s,) if 

(31) 

(actually a,, is correct to fifth order). Correct results to fourth order in time for 
arbitrary irrotational strains would require a fifth-order model. One should keep in 
mind that y4 does not influence this type of irrotational case (see comment in 92.1.1). 

Model predictions for plane strain with these parameter values are compared with 
RDT results in figure 3. The results are shown as a function of total reference strain 
c = exp (($Si, S,,): t ) ,  and show that the predictions converge rapidly towards the RDT 

1 y1 = -7, y z  = x 0.0295, y3  = &-Yr2 -0.0484 

6 F L M  269 
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results with increasing truncation order. One may note that the component with 
vanishing energy content is well predicted, not only by the fourth-order model, but also 
by the third- and second-order models. This can be ascribed to the built-in physics of 
the general form of the model and the fact that these models all satisfy the strong 
realizability condition. This property automatically ensures reasonable predictions 
near extreme states. Also, one should note that the calibration of the parameters is 
done for small times whereas the agreement between the predictions and RDT extends 
to quite large values of t (or c). 

For the special case of irrotationally strained initially isotropic turbulence, the 
relation (26) and the corresponding inverse relation may be used together with (22) to 
derive an explicit expression for the rapid pressure-strain rate in the RDT limit. This 
expression can be written in the same form as (10) with Q5 = Q, = 0. The explicit 
expressions for the Q, are, however, not uniquely determined by this limit since the 
terms in (10) that are tensorially of second order are linearly dependent in the case 
where aij is diagonal in the reference system aligned with the principal axes of Szj. Lee 
(1990) derived in a somewhat different manner an expression for ZIi;) from RDT in this 
type of situation (irrotational strain) and arrived at seven tensonally different terms 
(including up to fourth-order terms), all of which are not linearly dependent, though. 
Also Le Penven & Gence (1983) used RDT to derive an expression including up to 
second-order terms in the anisotropies. 

In the case of rapidly strained axisymmetric turbulence Z7:;) can be uniquely 
determined from RDT. There is only one independent anisotropy measure a,, = a in 
this situation (sz = s, = -$,), and the normalized pressure-strain rate can then be 
written 

- I7:;) = -+-a+-az+- 4 12 81 6075 a,+3692385a,+O(as), 
kU’ 5 7 98 15092 5493488 

where U’ = Ul, 1. The fourth-order model with the above choice (30) of the parameters 
is correct to second order in a, which is equivalent to third order in time for the 
anisotropies. The model predictions for the pressure-strain-rate term in this case are 
compared with RDT results and other models in figure 4. 

The models that do not satisfy strong realizability, such as those of Launder et al. 
(1975) and Speziale et al. (1991), give rather poor predictions for situations with a 
strong degree of anisotropy. The model of Lee (1900) is derived directly from RDT 
results (for irrotational mean flow) and does not satisfy strong realizability. Yet, it 
gives accurate predictions except very close to the two-component limit. The model of 
Shih et al. (1987) (or Shih & Lumley 1985) satisfies realizability and may be said to be 
an extended second-order truncation model. It gives a good description of the 
axisymmetric case, but behaves essentially as the present second-order model for plane 
strain and homogeneous shear flow situations. 

It can be concluded from figures 3 and 4 that a fourth-order model is sufficient to 
give accurate results (and satisfy realizability, etc.) for irrotational mean flows. It is also 
obvious from comparisons between figures 4 and 2(b) that the fourth-order model 
predictions are valid far outside the RDT regime, even down to non-dimensional mean 
strain rates of order unity. 

4.2. Rapid rotation - comparison with RDT 
The model parameter y4 has no influence on the previously described irrotational cases. 
A natural method of calibrating this parameter is by comparison with a pure rapid 
rotation. However, an initial isotropy is preserved by rapid rotation, and we must, 
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FIGURE 4. The predictions for the normalized rapid pressure strain rate, II:;)/kU' as function of 11, 
in axisymmetric turbulence compared with the exact result obtained from RDT. The numbers 2-4 
label the predictions with second-, third- and fourth-order modcls. Also included are results obtained 
with the models of Launder et al. (1975), Speziale et al. (1991) and Lee (1990). (y, = - 1/20 for 
second-order model predictions.) 

hence, use an initially anisotropic situation for the present purpose. A relatively simple 
situation is that of an initially isotropic turbulence subjected to a plane strain (sl = 0, 
s, = -sJ  If such a field is subjected to a subsequent pure rapid rotation around the 
1-axis, the anisotropy measures will exhibit damped oscillations. This can be found from 
a relatively straightforward rapid distortion analysis (see e.g. Cambon & Jacquin 1989 
or Mansour et ul. 1991). The asymptotic state will depend on the initial distribution of 
energy in wavenumber space, and the damping may be interpreted as a phase 
scrambling effect caused by internal waves. This phase scrambling is manifested in the 
way that each Fourier component will vary harmonically, but with a period that 
depends on the direction of the wavenumber vector. The phase relations will thereby 
be scrambled. It is natural to refer to the rotating coordinate system here (angular 
rotation rate w) .  The frequency of oscillation of the anisotropy measures is close to 4w 
(modified somewhat by damping effects). 

Cambon et al. (1992) studied the effects of rotation by dividing the spectrum tensor, 
after neglecting the antisymmetric imaginary (helicity-related) part, into three parts : 

G y  @E 
where A,, = 8, - K% K ~ / K ~ ,  and E(K) is the three-dimensional energy spectrum. Only the 
first part has a non-zero trace after integration over spectral space, and thereby 
contributes to the kinetic energy. The two latter parts contribute to the anisotropy 
tensor aij = uij +a& 

From the linearized dynamic equations, that are valid in the limit of rapid rotation, 
it follows that only @:. is affected by pure rotation. This implies that uij is constant 
under rapid rotations whereas a: vanishes as a result of phase scrambling caused by 
internal waves. 

6-2 
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FIGURE 5. The anisotropy measure a,, as function of time in the rotating system for pure rapid 
rotation of an initial anisotropic state (a,,, = -azzo = i). Also included is the RDT-result computed 
with an initial model spectrum according to Shih et a/. (1990) with the free parameter chosen so that 

= 0 (note that the asymptotic state depends on the initial energy distribution in wavenumber 
space). 

An interpretation of the contributions to the Reynolds-stress tensor from @$ and @: 
is that the former gives a measure of the ‘dimensionality’ of the energy distribution 
over lengthscales in the spatial directions and the latter is a measure of the distribution 
of energy among the velocity components (‘componentiality ’). One may note that 
there is a close relation to the structure anisotropy tensor yij used by Reynolds (1989) 
(see also Mansour et al. 1991): a:j = -yzj, This approach is valuable in the study of 
phenomena related to system rotation, but it does not solve the modelling problems 
concerning the rapid pressure-strain correlation. The modelling extension suggested by 
Cambon et al. is to include an ad hoe relaxation term that has no support in the original 
equations and definition of n$). 

For the class of classical Reynolds-stress closures we may note that a consequence 
of the assumption that A4 is expandable in aii alone is that all model predictions based 
on this concept will give undamped oscillations of the anisotropy measures. This can 
be seen from the fact that the general form (10) will imply conservation of the 
invariants 11, and 111, when S,  = 0: 

independent of the specifics of the scalar functions Q,. Thus, the most one can hope 
for within the concept of classical Reynolds-stress models is to predict a reasonable 
period of oscillation. With the present fourth-order model this is achieved with 
y4 x 0.1 for the case in figure 5. In fact, the optimal value may vary somewhat with 
the specifics of the initial conditions. 

One may also note that a further consequence of this type of modelling is that 
initially axisymmetric turbulence subjected to rotation around the symmetry axis will 
be predicted to remain unaffected by rotation. In reality, oscillations of the anisotropy 
measures will occur here also, and will be damped by phase scrambling. 
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FIGURE 6. RDT and fourth-order model predictions of the Reynolds-stress anisotropies as 
function of non-dimensional time ( S  = U1J in a (rapid) homogeneous shear flow. 

With these fundamental limitations in mind we may now consider all model 
parameters to be determined for the models with truncation level at fourth order or 
lower. The complete fourth-order model is now defined by the general form (10) an the 
definitions ( 1  3 a-i), (16a-c), (19 u-f) together with the above choice of model 
parameters, namely 

y1 = -$, y 2  = 0.0295, y 3  = -0.0484, y4 = 0.1. (34) 

4.3. Tests of the model in two complex $ow situations - comparison with existing 
models 

With the model parameters determined we may now test the predictive capability in two 
cases that involve considerable difficulties. The first is the idealized situation of a 
homogeneous shear flow, which despite its apparent simplicity offers considerable 
challenges to the modeller. It can be regarded as a superposition of a plane strain and 
a pure rotation. It is a situation where there is a misalignment between the principal 
axes of the anisotropy and strain-rate tensors. This misalignment cannot be predicted 
by simple models, for example of eddy-viscosity type, and offers together with the 
rotational part of the mean flow, interesting challenges. The second case is one where 
the orientation of the principal axes of the strain is suddenly changed in a plane strain 
situation, whereafter the adjustment of the Reynolds stresses to the new mean strain 
field is studied. 

The homogeneous shear flow test case was studied under the conditions of rapid 
shear on a field of initially isotropic turbulence. Model predictions for the stress 
anisotropies are compared with RDT-results in figure 6. The corresponding 
comparison for the kinetic energy in figure 7 is complemented with predictions by other 
models published in the literature. The technique of obtaining RDT solutions for this 
case is described in, for example, Townsend (1970). 

Considering the limitations in the capability to predict rotational effects, the results 
for the fourth-order model are still reasonably close to the RDT results. The models 
referred to earlier in this paper, included in figure 7, as well as the present second- and 
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FIGURE 7. RDT and fourth-order model predictions of the kinetic energy as function of non- 
dimensional time in a (rapid) homogeneous shear flow. Also included are results obtained with the 
models of Launder et al. (1975), F u  et al. (1987), Speziale et al. (1991) and Shih et al. (1987). 

third-order models give substantially worse results. For instance, the model of Shih 
et al. (1987) predicts an energy that is different by a factor of about 3 for St = 8. 

Fifth- or higher-order truncations do not improve the situation significantly over 
that of the present fourth-order model. No truncation of this kind gives uniformly 
correct results in accordance with RDT for arbitrary mean velocity gradient fields (i.e. 
with non-zero QJ. 

The prediction of turbulent states for irrotational mean flows where the principal 
axes of the anisotropy and the mean strain rate tensors are misaligned offers new 
difficulties as compared with the previously described irrotational cases. The test case 
chosen here is a plane strain situation where the initial strain field is described by 
(Sl, = 0, S,, = -&). After an initial period the strain field is rotated by 45" around 
the x,-axis whereafter the adjustment of the Reynolds stresses is studied. The change 
in the orientation of the principal axes of the Reynolds stress (or anisotropy) tensor 
can be expressed as 

1 2% 
2 fl22 - fl33 

q!J = - arctan ~. (35) 

One may note that, as a result of the two successive strains, fluid elements in fact will 
be rotated not just strained. The variation in the angle r#J is shown in figure 8 where the 
RDT-results are compared with the present fourth-order, and other, models. The angle 
r#J approaches 45" asymptotically. The complexity of the RDT-formulae for this case 
is such that their derivation calls for use of computer algebra. 

The sudden change in slope at c = 2 in figure 8 also corresponds to an abrupt change 
in the slope of the kinetic energy and anisotropy measures. The model of Speziale 
et al. (1991) predicts well the variation of q!J but does rather poorly for other quantities. 
One compact way of illustrating the variation of the turbulent state is to study the path 
in the anisotropy map, i.e. in the (HI,, 11,)-plane. Although both 11, and 111, undergo 
abrupt changes in time, the path in the (III,, &)-plane is a smooth one. Figure 9 shows 
that the present fourth-order model gives excellent agreement with the path predicted by 
RDT, whereas the other models give results that are not even in qualitative agreement. 
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FIGURE 8. Predictions of the change in orientation of the principal axes of the Reynolds-stress tensor 
after a sudden 45" change in the orientation of the axes of applied plane strain. RDT and fourth-order 
model predictions are compared with the models of Launder et al. (1975), Speziale et al. (1991) and 
Shih et al. (1987). 
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FIGURE 9. Predictions of the path in the anisotropy map after a sudden 45" change in the orientation 
of the axes of applied plane strain. RDT and fourth-order model predictions are compared with the 
models of Launder et al. (19751, Speziale et al. (1991) and Shih et al. (1987). The horizontal bars 
indicate where the orientation of the imposed strain was changed. 

This is primarily due to misprediction of the third invariant, which is a quantity quite 
sensitive to details in the models. Note that here the model parameter -y4 influences the 
result. The corresponding prediction in homogeneous shear flow is even more 
demanding and the situation is not as satisfactory as in figure 9, as is evidenced by the 
misprediction of a,, in figure 6. 
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5. Summary and conclusions 
In classical Reynolds-stress closures, transport equations are formulated for the 

Reynolds stress tensor and the dissipation rate. Staying within this concept our only 
(reasonable) choice for the modelling of the rapid pressurestrain rate is in terms of an 
expansion of FA in the anisotropy measures aij. It was shown here that the general form 
for lI&? based on such an expansion can be expressed in terms of seven scalar functions 
that in principle may depend on the invariants of atj and the other scalar flow 
parameters. The relation between M and aal was found, by use of direct numerical 
simulations, to be practically independent of Reynolds number and little influenced by 
the variations in energy distributions in wavenumber space that may be caused by 
different mean strain rates. This allows the use of rapid distortion theory for the 
determination of the model parameters as purely numeric constants. It also indicates 
that the assumptions underlying the one-point closure of the rapid pressure-strain rate 
are reasonably well satisfied. 

Nonlinear models of second and higher order may be made to satisfy basic 
conditions, such as continuity, the Green’s condition and strong realizability. By 
satisfying strong realizability one ensures prediction of non-negative energies, but also 
a generally sound behaviour near extreme states and a reasonably accurate prediction 
of energy-poor components, which is of particular value in strongly strained or sheared 
flows. The latter behaviour is, of course, not ensured by models that satisfy only the 
weak realizability condition. 

At a truncation level of fourth order in the amplitude of ail four model parameters 
must be determined from comparisons with RDT. It was also shown from comparisons 
with DNS results that, although the model parameters are determined from 
comparisons with RDT at small times, the predictions are valid far outside this regime, 
down to quite moderate mean strain rates, and for large times. It was shown that a 
fourth-order model is quite sufficient to give very accurate predictions of irrotational 
mean flows, but also to get reasonable predictions of the kinetic energy development 
in a rapid homogeneous shear flow. Also the shear stress and the ‘energy-poor’ 
component are well predicted. There are limitations, though, inherent in the concept 
of classical Reynolds-stress closures for the predictive capability of the detailed features 
of the anisotropy state in this type of case (with Oil =I= 0). 

As a severe test of the predictive capability of the present fourth-order model and 
other existing models, comparisons were made for a case where the orientation of the 
principal axes of the applied strain was given a sudden change. Of the models 
compared only the present one was able to predict the detailed changes in the turbulent 
state as measured by the Reynolds-stress anisotropy tensor. 

Interesting possibilities have been suggested (Mansour et al. 1991 and Cambon et al. 
1992) of generalizing the RST closure concept. The specific aim has been to improve 
the capability of predicting effects associated with rotational mean flow fields. Of 
course, the number of transport equations is also increased in these new approaches. 
Exciting new possibilities for future investigations can be seen here. 

All in all, the present findings imply that it is not really possible to obtain a model 
with significantly better predictive capability or generality than that described by the 
present expression (10) along with a fourth-order truncation within the concept of 
classical Reynolds-stress closures. 

This paper is dedicated to Mkrten T. Landahl as a token of respect and gratitude by 
a scientific ‘son’ and ‘grandson’. It is an extended version of a manuscript included in 
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a Festschrift (Progress in Fluid Mechanics (ed. P. H. Alfredsson, F. H. Bark & A. V. 
Johansson)) published to celebrate the occasion of Mirten Landahl's sixty-fifth 
birthday. We would like to thank Anthony Burden and Erik Lindborg for many 
fruitful discussions and constructive critique of earlier versions of the paper. We also 
gratefully acknowledge financial support from NUTEK. Supercomputer time was 
provided by the National Supercomputer Center (NSC), Linkoping, Sweden. 

Appendix. Realizability 
Since the eigenvalues of the Reynolds-stress tensor have the physical meaning of 

kinetic energies in three perpendicular directions they must always remain positive or, 
in an extreme state, be equal to zero. If we let da) and u y ) ,  with CI = 1,2,3, denote the 
eigenvalues and the eigenvectors, respectively, of the Reynolds-stress tensor R, their 
relationship may be expressed as 

from which we may obtain 

if we choose to work with normalized eigenvectors, i.e. v$)u6") = 1. In an extreme state 
where one eigenvalue vanishes, dl) = 0 say, the first time derivative must be zero and 
the first non-zero derivative must be positive to ensure non-negative values of the 
eigenvalue itself. This is the strong realizability principlc according to Pope (1985). We 
may first investigate to what extent the exact Reynolds-stress transport equation, as 
derived from the incompressible Navier-Stokes equations, satisfies realizability. The 
momentum equation for the fluctuating velocity may be written as 

R..z)!") = g(a)uy) ,  

a(") = v y ) R . . ~ ! " )  

a3 9 

29 3 

u.  = f .  
2 2 )  

from which the Reynolds stress transport equation is obtained as 

where the force termfi is given by 

The rate of change of an eigenvalue is given by 

where the first two terms are zero since they may be rewritten as 

2dy)rr'"'vb"', 

which evidently is zero since the eigenvectors are normalized. Thus, the rate of change 
of d") is obtained from the projection of the Reynolds-stress transport equation onto 
ZI,!")~?) (cf. Lumley 1978): 

_ _ _ _  
ci'"' = uy'(uiJ + U j f i )  U P '  = 2(u:"'ui) (U,!"'f) .  

In the two-component limit where n(') = 0, say, the velocity field is plane and 
perpendicular to uil)((vjl'uJz = 0). Hence, the right-hand side vanishes and CP = 0 at 
the extreme state. In fact each term, originating from the corresponding term of the 
momentum equation, must vanish (cf. Schumann 1977). Concerning the modelling of 
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the various terms this means that the strong realizability condition may be imposed on 
each of the following groups of terms: 

advection : - U, “i& 
- - 

production : -uiuk u j , k w U j u k  Ui,k, 
triple correlation : 

pressure related: 
viscosity related: 

- ui ui u ~ , ~ ,  
- u , P , ~  - ujp,$ = P ( U ~ , ~  + ui, i )  

v(u, u,, lck + uj ui, lc,) = - 2vui, uj,  + vui 

- -  -- 
-puj,,, 

-- ~- 

where the traditional split of the pressure- and viscosity-related terms has been 
indicated. 

In constructing turbulence models for the various ternis, although rigorously not 
correct, as seen above, realizability is often imposed directly on the pressureestrain-rate 
tensor or the dissipation-rate tensor which represent only parts of the complete 
pressure or viscosity related terms. This approach can be justified by reasoning in the 
following way. The extreme states where the realizability condition becomes important 
are characterized by the velocity field being plane, i.e. n, ui = 0 for some vector ni being 
constant over the complete ensemble of velocity fields at the specific spatial location at 
the specific time in question. We may ask ourselves in what types of situations such 
plane velocity fields may occur. In homogeneous turbulence a strong positive mean 
strain in the direction of n, may cause a plane velocity field perpendicular to n,. This 
is approximately the case when turbulence is strained by the passage through a wind 
tunnel contraction. In homogeneous turbulence the spatially redistributive terms are 
zero and we may therefore impose the realizability on the homogeneous parts of the 
source terms. Another case where we may encounter a plane velocity field is in the case 
of turbulence in the immediate vicinity of a solid wall. It is easily shown that each of 
the transport terms, i.e. the pressure velocity gradient and the triple velocity divergence 
terms and the viscous diffusion term, are identically zero at the wall in the equation for 
the stress normal to the wall. Thus, again, each of the terms in the traditional split 
satisfy realizability. It is difficult to find any other typical flow situation that may 
produce plane velocity fields. Thus, in practice, it is justified to apply the realizability 
condition on each of the terms in the right-hand side according to the traditional split, 
for instance on the homogeneous rapid pressure-strain-rate correlation, although it is 
in a mathematically strict sense an unnecessarily restrictive condition. 

The requirement that the first non-zero time-derivative of dl) must be positive is 
normally not accounted for and is of course much harder to guarantee in an RST 
closure scheme. 

Pope (1985) also discusses the principle of weak realizability, which states that in an 
extreme state dl) must be non-negative. This also ensures non-negative eigenvalues, 
but may lead to situations where the extreme states are not accessible. 
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